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MAXIMUM LIKELIHOOD ESTIMATION OF THE SURVIVAL FUNCTIONS
OF STOCHASTICALLY ORDERED RANDOM VARIABLES

Richard L. Dykstra

ABSTRACT

Many times populations exist which logically must
satisfy a stochastic ordering requirement. Nevertheless,
estimates of these populations may not bear out this
stochastic ordering because of the inherent variability of
the observations. This paper will consider the problem
of finding maximum likelihood estimates of stochastically
ordered survival functions for the cases a) one survival

function being fixed in advance and b) estimating both

survival functions when the data includes censored
; observations.
A numerical example is handled in detail to illustrate

the solution to this problem.
AMS Classification numbers: Primary 60G05; Secondary 62N0O5.

- Key Words and Phrases: maximum likelihood estimation;
‘ survival functions; stochastic ordering; censored

observations; Kaplan-Meier product limit estimator;
order restrictions.
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I. INTRODUCTION

Many times a new population is created which can
logically be only stochastically greater (or less) than
the old population. Nevertheless, estimates of these
populations may not bear out this stochastic ordering
because of the inherent variability of the observations.
Brunk, et.al. (1966) have given Maximum Likelihood
Estimates (M.L.E.'s) of the C.D.F.'s of two stochastically
ordered distributions when all observations are complete
and the estimated distributions arerequired to be of the
discrete type. This paper will consider the similar
problem of finding M.L.E.'s of stochastically ordered
survival functions for the cases a) one survival function
being fixed in advance and b) estimating both survival
functions when the data includes censored observations.

The unrestricted (except for the requirement of
being a discrete distribution) M.L.E. of the survival
function when censored data is involved has been developed
by Kaplan and Meier (1958). Since the results of Kaplan
and Meier are so well-known and widely used, this paper

will largely conform to the notation developed there.




II. NOTATION, THE PROBLEM, AND THE SOLUTION
Initially, we consider the following problem. Inde-
pendent observations are taken from a discrete distribu-
tion on the positive part of the real line with survival
function P(t). We wish to find the M.L.E. of P(t) subject
to P(t) 2 Q(t) for all t where Q denotes the survival
function of a fixed discrecte distribution with only a
finite set of points possessing positive probability.
Complete observations (which we will call deaths) occur on a
subset of the times S1 < S2 < see < Sm (S0 = 0 and Sm = o for

+1

convenience). The number of deaths at sj is Gj’ We let

Aj denote the number of censored observations (losses)

: G) .

in [Sj’ sj+1), assumed to occur at L. "7, i = 1, , Aj .
In Section III, we will prove that Bt) may be expressed

in the following manner. Let S1 <S8, < ... < Sm

denote the ordered values of the times of death combined
with the points of positive probability under Q, and let

m

= Iy . .
nj jzi ot A) denote the number of items surviving just

prior to S;. Our P; and q; are rclated to P(-) and Q(-)

respectively by

P

j Zn [P(Sj)/P(Sj_l)], and
q.

5 = n 1085 /0s; ).
Then the restricted M.L.E. for t < Sm is given by

A
P(t) =expl £ ;]
1;Sist

where 61 is given in the following theorem.
(Throughout the paper we shall treat ©® and -« as real
numbers grecater than and less than all other real numbers

respectively. Wec shall also adopt the conventions that
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A-‘.An-'\l

tn(0) = -~» , 0/0 =1 , and

to/tm = 1,

0(4=) = 0 ,

bdenote the constant k such that
»

. - 6, k b
b nJ +

Theorem 2.1. Let k;

(2.1) T £n( 2 ) = L q..
a nj vk a J
if k > 0 and exists and 0 otherwise. Then if f
A min max .
(2.2) ki ® asi ic<h ka,b ’
ﬁi is expressable as .
n. - &, + K
6i = ¢n (= i i
n. + k.
i i

Of course if the last observation at say t* corres-
A
ponds to a loss, the P(t) may be defined arbitrarily for
A A
t > t* providing P(t) > Q(t) and P(t) is a survival function.

{Note that if Q(Sl) = Q(SZ) 2 .. = Q(Si) = 1, then

i n. - S. +k i
L ln( 1 J ) = zq. = (
1 nj + k 1 j

has the solution k = ». This leads to the intuitively reason-

~ ~

able solution 61 =Pp,=""" =p;=

hood is identically zero in this case.)

0, even though the likeli-

Alternatively, the 6j's can be found more easily by the
following algorithm:

1. Find the largest k1 > 0 such that

Mon 8+ kg 1y cor 0 <
L €n ( ) =L q, for <i, = m.
1 ny o+ K 1 ) 1

1f more than one i1 works, choose largest.

§. + k

. X 1) for 1 < j < il.
i+l

A ni -
2. Let Pj = fn ( =




3. Find the largest k2 > 0 such that

j+2= . .
o ) R qj for i <i; = m,

If more than one i2 works, choose largest.

n. - §. + k
A j 3 2y . Co
4, Let pj = ¢n ( — X ), i < iye
j 2
5. Etc. If at some point, no such positive k(

exists, then

A n, - §. ) .
pJ = (n(—l——x-l——l)'for 1!—_1 < J T m.

J
If the last observation at say t* is a loss, then P(t) may be

may be defined arbitrarily beyond t* as long as P(t) ~ Q¢t)
and P(t) 1is a surivial function.
The order constraints P(t) < Q(t) can be handled similarly

with the modifications given below.

1f 61 = 52="'=5i = 0 and Gio+1 > 0, sct pj = qj
for j = 1,2,"',io . lor j » io ,» Thecorem 2.1 will still
work by

i) restricting a to be greater than io ,
ii) defining ka,b to be the value k in (2.1) il k - 0
and cxists, and 0 otherwise, and
iii) interchanging the words min and max in (2.2).
The algorithm is modified to handle P(t) s Q(t) by
i) setting ﬁj = q for j =1,2, """, i,
ii) beginning the sum in step 1 at io+1 rather than 1,

iii) replacing k.1 > 0 by ki < 0 , and




iv) replacing "largest ki > 0" by "smallest ki < 0" ip
steps 1 and 3 and replacing '"positive'" by '"necgative"
in step 5.
The two-sample problem where a second set of independent
observations are taken from a distribution with survival func-
tion Q(t) can be handled by essentially the same mecthods already

given. In this case, let Sy "'« Sh denote the ordered times

of death of the combined samples. We let m denote the

number of items in the second sample surviving just prior
to Sj’ and dj the number of deaths at Sj in the second sample.

Then Theorem 2.1 will still apply if (2.1) is replaced by

b n. - 6§, + k b m, -d. - k
(2.17) I £n(—2 J = T fn (—d i
a n; + k ) a n ( mo - K )

subject to a special case.

As is to be expected, when Theorem 2.1 applies

m., - d. - k.
A - J J 1
q: = £n( ).
j m. - K.
j i
[f dl = d2 = e = dio =0, dio+1 > 0, then we must

set pj = ¢g., jJ & i

j < i, in our likelihood function, 1t is straight-

forward to show that.
+n. - §.
- J s o=
+ n,
J J

m.
2.3) ,. =ﬁ. =_J .
( P, i L yoer, g

are the solutions for pj and qj in our equations. The earlier

scheme then works if we require a to exceed iO‘

The algorithm will still work if we

i) define ﬁj and aj as in (2.3) if j < i

ii) replace
e Y m, - d, -

k
L qiby © en(d—d &y £or a11 g
i, ,+1 i, q+1 m, - k




iii) and define

~ m; - d; - kg : .
4 = 2n( m X, ) for ip ; <3 < i
IIT. DERIVATION FOR THE ONE SAMPLE PROBLEM

Clearly, the likelihood function of the observations

is expressible as !

Ao (0) m AJ (i)
(3.1)  L(P(t)) = . P(L, ) - I ([P(S; - 0)- p(s )] 5 moP(L; J i
i=1 j=1 J i=1
{
where S1 < S2 een < Sm are defined as in Section II. We wish

i to maximize this expression subject to the condition that

‘ P(t) = Q(t) for all t. Clearly to do this, the P(Li(j)) and
P(Sj - 0) should be as large as possible and the P(Sj) as small
as possible. Decreasing the P(Sj) too much, however, may cause
i _ the order constraints to be violated. llowever, since we are
dealing with discrete distribution, clearly it will suffice to

maximize

1 n %5 '3
s glp(sj_l) - P(Sj)] P(Sj)

subject to P(Sj) > Q(Sj), j=20, ..., my, since we can

take P(.+) to be constant on the intervals [Sj, Sj+1)'
Equivalently, we wish to maximize
P(S.) 6. P(S; S. P(S.) X
J J v I
?T§_l"_] [ -(gl——T . P(5)) ] [png%l) P(sy) 1
P(S.) Q(s;)
or, letti ;o= and qf =
f to maximize
m 8 - A A.+6. ;
m [ -p)Jdp:d - 1 pi 3N
J'_-_.l J J 1<J

subject to

- 0 for all j. .




If we let n, =

s

§. + ). denote the number of items
j=i J J
surviving just prior to Si’ our expression becomes

m 5j nj-éj
{1 - p: 7 .
1 ( pJ) pJ

Finally, making the change of variables,

- P; = ¢n p{ and q; = £n Qj

k and considering the natural log of the likelihood, our

problem is to maximize

m P
= - J -
(3.2) f(pl, - aDpp) % §. £n(1 e ')+ (nj éj) P;

J

subject to the constraints

i i
Zp.:Zq.andoap.2~wfori=1’2’-'_’m.

lJ lJ 1

Suppose thc constraint 1

1 1
Zp.=Lq.=c (0 >c >~ )
1 1

is imposed when maximizing f(pl, ceey pm). Then by

einy

i-1
z
1P .

equal to zero, we obtain the system of equations

writing p; = ¢ - and setting the partial derivatives

3.2)- &, Pj Pj i
-2 jed/(l- ey ems -8 g5 L5 ang

= -k, j <i.

P. P; p; p;
i (3.3)-5je3/(1-e J)+nj-6j=—éie /A -e)+mn -8
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poingg

Solving these equations gives the values

n. - 6.
6j = ln(—lﬁf*—l), j > i, and
J

- 8. + k
+

le—). j < i.

n,
A i
pj In( nj

(Strictly speaking,cquations (3.2) and (3.3) arc not valid if

Gj = 0, However, our solutions are still correct
according to our previous conventions.) Moreover, noting
that
n. - -+
p; = In(———— k)
i n. + k ’

i
by adding the first i equations it easily follows that k

must be a real solution of the equation

i nj - Gj + k i

Z £In( ) =Lq,=¢c

1 ny + Kk 1 J

In most situations, k will not have a closed form

expression.

If m* constraints are imposed in obtaining the M.L.E.,

say
i1 1 im* 1
z .= % = C . r = I = C_xy
I pJ ] qJ 1’ © ] Pj 1 qJ m*
then this is equivalent to the constraints
i) iz im*
? pj = Cqp» pX P;i =€y = Cyy «vty z p; = ¢ T Chrog

. . *
ij+1 ) iatl Y m

i ool




Each part of f(*) may then be maximized separately
to obtain a solution of the form

t n. - §. + k
2

% (3.4) P; = Zn(lhj e 4)

, if iz_1 <j s if, £=1, ..., m* + 1,

J 2

where kl is the unique real solution of the equation

L n n. + k - z q. = ¢, - ¢ ¢ =1, ..., m*,
. +1 j t . 1 3 £ £-1? ’ ’
o 1e-1 1p-1

(We take io’ Co» and km*+1 to all be zero.)
The problem of [inding the stochastically ordered

M.L.E. of the survival function is thus that of determin-

ing which constraints should be imposed.

To answer that question, the following lemmas are

important.

Lemma 3.1. The function

P
£(py» Pys «vvs By) = 65 £n(1 - e Iy + (ny - 85) p;

-t H

1s concave for 0 = P; 2 - .

Proof. This easily follows since

3" £ _ Pj - Pi2
W = - 61 e /(1 e ) -<e 0'
1

Since f(pl, ...,pm) is concave, and the constraints

on the pi’s are linear, the following lemma follows by
arguments similar to those used in Theorem 1 of Dykstra and

Madsen (1974).

Aa X _ DAl el i 485 S——




Lemma 3.2. Assume that A and A denote column vectors,

f(-) is a concave real valued function defined on an

appropriate subset of Rn, and that Ak maximizes f(A)
subject to the constraints A{ A < bi’ i=1,2, ...,k.
Then if the additional constraint A£+1 A < bk+1 is

imposed, we may assume that
a, |if A£+1 Ay < bk+1’ Aa1 = As
bo If AfLy A > Prays Axeg Aker T bpag.
The key in determining which constraints need by

imposed in maximizing (3.2) is given in the following thecorem.

Theorem 3.1. If the actual restricted M.L.E.'s are

expressed in the form of (3.4)

et o mi Al Rt

then k; 2 k, 2 ... 2 km* 2 0.

Proof. Without loss of generality, assume k1 < kz. Then

if the maximum is found with the m* — 1 imposed constraints i

*
the value of kl which corresponds to the first constraint

®
is such that k, < k1 < k,. This easily follows since the ;

6. are nondecreasing functions of the kj' Since

i i,
2 n, - 6. + k. * n. - 8. + k
R Zn(*Jn +1F** L) s I pa(-d ] 2)
j=1i J 1 j‘i nj + kz 1ﬂ
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for all il <i siz, it follows that

*
pjz

(ST
-0 e

qj for i =1, ..., m,

where the pj* denotes the values which maximize ()
imposing only the m* - 1 constraints. By Lemma 3.2,
this implies that pj* = Sj which is an obvious

contradiction.

Theorem 3.2. The algorithm given in Section Il obtains

A
pj'
Proof. Straightforward from previous considerations.

The closed form expression for a particular ﬁi

given in Section II can also be obtained.

Proof (of Theorem 2.1). Clearly the expression is valid

for 61 by Theorem 3.2. Thus, using the notation of the

algorithm given in SectionlII, it casily follows that

A
kl=ﬁ]3 ﬁzz "'ikm'
Let i denotc the first integer < iy such that ﬁi kl.
;1 ;1 , (nj - dj + kl) )1;12 ("j - Gj + k1
q. = n n
1 31 ny + Kk 1 ny *+ ky
A
1 n -6j+ki
+ T In( )
A
nj + ki
i'] il
22 q. + I .
I qJ i qJ

which is a contradiction. Thus no such i exists :and




k1 = ﬁ. for i = 1,2, ..., il. Essentially the same

arguments handle subsequent intervals.
We should note that whenever Gj = 0, (no deaths

are observed in the interval [Sj’ Sj+1)) ,6j= 0, and the survival

function ﬁ(t) places zero probability over this interval.
Heuristicallv, the stochastically ordered M.L.L.

acts like it has kj additional items on test at the time

1 Sj' Over the interval [Sj , Sj+1), k. - k. of these itens

j j+l
are lost, etc. Note, however, that the ij need not be

integers.

IV. THE STOCHASTICALLY ORDERED TWO SAMPLE PROBLEM

Let us now consider the case where our observations,
perhaps censored, come independently from two different
discrete populations. As in Section III, we denote the ]
:} true survival functions and the imposed ordering by
P(t) = Q(t) for all t. 1

As before, we assume that P(0) = Q(0)

1 WLOG.

In a manner similar to that used in Section IIT,

ey

the function to be maximized may be expressed as

£(p, Q) =

—-=~M3

- oPJ -
[aj Ln(l - e™7) + (nj Gj) pj] +

d 1 - el d
[jzn( - e )*(mj' j)qJ]

where 0 < S; < ... <8 denotes the ordered times of !

death of the combined sample, & (dj) denotes the number

] |
of deaths at Sj in the first (second) sample, n, (mj) |

denotes the number of items surviving just prior to Si




in the first (second) sample, and P (qj) represents ln[P(Sj)/P(Sj‘ﬂl

(Zn[Q(Sj)/Q(Sj_ﬂ ). The order constraints are still of

the form
i <
Ip;,>2Zq, fori=1l, ..., m.
1 3 1)
If we wish to maximize f subject to the one

constraint

then we may let qQ; =L Py - pX qj, and set the partial
1 1
derivatives equal to zero. This results in the set of

equations

P; P ’
- Gj e /(1 - el + ns - §. = 0

J
. @« i
-d,elly1-e )y +m, -4d, =0
;€ /( e -) ms j
-4 epj(l-epj)+n-6=d el/(l ei)-m +d.=k, j <1
j iT% % it 4T )
. q. q: q:
_ 4] - 1 _ = - 1 _ 1 . =
dje (1- e )+mj dj di e “/(1-e )+mi di j <i




]
[}
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Solving these equations results in the solutions

n, - &,
P; = (g, j > i
J
m. - d.
GJ=£n(—Jﬁ—1).J > 1
J
A n, - Gj + k
Pj = t(—F—x—), =1
J
A mj - -k
4y = (g, j = i
J

where k is a real solution to the equation

i Ej_'6j+k i mJ.-dJ.-k
i £n( T S f £n( mj - k ).

If more constraints are imposed, similar solutions
can be obtained for disjoint strings of the 6j and Gj.

Once again the key question is which constraints
need be imposed in finding the true restricted M.L.E.'s.
However, the same methods and lemmas used in proving

Theorems 2.1, 3.1 and 3.2 will also suffice in the two-
sample case and lead to the expressions given in Section IT.
Another appealing method of handling the two-sample
problem which will work if the samples do not include any
censored data is to convert it to a one-sample problem as
considered in Section 3 by making the observation that
there must exist a survival function, say ﬁ(t), depending

on the data such that

A A A
P(t) 2 R(t) 2 Q(t) for all t.

W PPN SOOI TR e i
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Intuitively, the more equality constraints imposed
between 3(t) and a(t), the more ﬁ(t) will be pulled down
and a(t) forced up (assuming the constraints ﬁ(t) > a(t)
are already imposed). The limiting case of this occurs
if all equality constraints are imposed in which case

P(t) = R(t) = Q(t)
where ﬁ(t) denotes the Kaplan-Meier (1958) product limit
estimater obtained from the pooled data. Thus if we
construct ﬁ(t), treat it as fixed, and compute 3(t) as in
Section IILS(t) will be our restricted M.L.E. for ﬁ(t).
With obvious changes, a(t) can be obtained similarly.
Unfortunately, this method does not work when the samples
include censored data although the end results are very

close to the actual M.L.E.'s.

In the special case of no censorcd data explicit

expressions for the ka p are given by
b ]

b b

ka,b = (2 6i) m, - (g di) n
b
g(di + Gi)

a

This is of coursc a wcighted average of m and -n,

with weight proportional to the number of dcaths in the
two populations for the appropriatc intcrval. In thix
casc the ecxpressions in Section 2 are cquivalent to thosc

in Brunk, ¢t al (1966).

o erilrgan

KA SR
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V. AN EXAMPLE

To illustrate the method, we apply it to some
data gathered by Dr. Martin Alpert, Dcpartment of

Cardiology of the University of Missouri Medical

Center. Dr. Alpert's data consists of survival times
for people who have had heart pacemakers implanted. 3
! We wish to estimate the survival functigns separately 5;
for males and females, and will impose the constraint
that the survival function for females never drops
below that of males since it is well documented that
females are longer lived. The data includes many

censored observations of people who were lost to the

study. The data on pages 18 and 19 has been coded to
conform to the notation used in the paper.

The M.L.E.'s of ordered survival functions for
males and females is shown on page 20. KM-P(T) and
KM-Q(T) denote the unrestricted Kaplan-Meier estimates

for the females and males respectively, while P(T) and

Q(T) indicate the M.L.E.'s obtained using our algorithm.
We note that P(T) has been forced up from KM-P(T) while
Q(T) has been forced down from KM-Q(T).

To try and get an idea of the overall effect of
our order restrictions, we computed the expected values

corresponding to our various survival functions when

st - ¢ M—




P
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they were all truncated at 97 months. These expectations

were

P(T) Q(T) KM-P(T) KM-Q(T)
72.737 68.609 69.842 70.837 .

Thus we see that our order restrictions increased the
estimate of expected life (if truncated at 97 months) by
nearly 3 months for females while decreasing it by approxi-
mately 2 months for males

A computer routine (in Fortran) for implementing

this procedure is available upon request.
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